推荐系统三十六式,解决你推荐系统80%的问题

你将获得什么?

  • 5 大模块梳理推荐系统知识脉络;
  • 20 个推荐系统算法原理精讲;
  • 10 大算法落地事件案例解析;
  • 掌握推荐产品理念及商业价值。

课程介绍

PC 时代是搜索的天下,而移动时代则是推荐的主场。

最近十年尤其最近五年,借助推荐系统的技术和名头,异军突起的互联网产品越来越多,推荐系统成了互联网产品的标配。甚至有人说在未来,推荐系统会成为所有数据型产品的标配。

而推荐系统前方的技术蓬勃发展,后方却落地困难。审视推荐系统的技术应用现状,大厂们一骑绝尘,太多中小厂的工程师们还不知道一个推荐系统如何从 0 到 1 诞生,需要去了解哪些知识。

本专栏为推荐系统学习者架构起整体的知识脉络,并在此基础上补充实践案例与经验,力图解决你系统起步阶段 80% 的问题。

概念篇:推荐系统有关的理念、思考,形而上的内容,虽然务虚但是必要。

原理篇:推荐算法的原理介绍与干货。了解推荐系统背后技术的基本原理后,你可以更快地开发和优化自己的系统,并且更容易去学习专栏中未涉及的内容。

工程篇:推荐算法的实践内容。介绍推荐算法落地时需要一些纯工程上的大小事情,架构、选型、案例等,为你的实践之路推波助澜。

产品篇:推荐系统要成功,还要考虑产品理念及其商业价值,此处介绍一些产品知识和一点浅显的商业思考。

团队篇:个人该如何学习和成长,团队该招多少人又该有哪些人,以及产品经理和工程师该如何合作等问题。

课程目录

开篇词 (1讲)
开篇词 | 用知识去对抗技术不平等
概念篇 (3讲)
01 | 你真的需要个性化推荐系统吗?
02 | 个性化推荐系统有哪些绕不开的经典问题?
03 | 这些你必须应该具备的思维模式
原理篇 · 内容推荐 (3讲)
04 | 画鬼容易画人难:用户画像的“能”和“不能”
05 | 从文本到用户画像有多远
06 | 超越标签的内容推荐系统
原理篇 · 近邻推荐 (3讲)
07 | 人以群分,你是什么人就看到什么世界
08 | 解密“看了又看”和“买了又买”
09 | 协同过滤中的相似度计算方法有哪些
原理篇 · 矩阵分解 (3讲)
10 | 那些在Netflix Prize中大放异彩的推荐算法
11 | Facebook是怎么为十亿人互相推荐好友的
12 | 如果关注排序效果,那么这个模型可以帮到你
原理篇 · 模型融合 (3讲)
13 | 经典模型融合办法:线性模型和树模型的组合拳
14 | 一网打尽协同过滤、矩阵分解和线性模型
15 | 深度和宽度兼具的融合模型 Wide and Deep
原理篇 · MAB问题 (3讲)
16 | 简单却有效的Bandit算法
17 | 结合上下文信息的Bandit算法
18 | 如何将Bandit算法与协同过滤结合使用
原理篇 · 深度学习 (2讲)
19 | 深度学习在推荐系统中的应用有哪些?
20 | 用RNN构建个性化音乐播单
原理篇 · 其他应用算法 (3讲)
21 | 构建一个科学的排行榜体系
22 | 实用的加权采样算法
23 | 推荐候选池的去重策略
工程篇 · 常见架构 (3讲)
24 | 典型的信息流架构是什么样的
25 | Netflix个性化推荐架构
26 | 总览推荐架构和搜索、广告的关系
工程篇 · 常见模块 (4讲)
27 | 巧妇难为无米之炊:数据采集关键要素
28 | 让你的推荐系统反应更快:实时推荐
29 | 让数据驱动落地,你需要一个实验平台
30 | 推荐系统服务化、存储选型及API设计
工程篇 · 效果保证 (3讲)
31 | 推荐系统的测试方法及常用指标介绍
32 | 道高一尺魔高一丈:推荐系统的攻防
33 | 和推荐系统有关的开源工具及框架介绍
产品篇 (3讲)
34 | 推荐系统在互联网产品商业链条中的地位
35 | 说说信息流的前世今生
36 | 组建推荐团队及工程师的学习路径
结束语与参考阅读 (3讲)
加餐 | 推荐系统的参考阅读
结束语 | 遇“荐”之后,江湖再见
结课测试 | 推荐系统的这些知识,你都掌握了吗?

讲师介绍

“推荐系统三十六式”是由链家网资深算法专家刑无刀(陈开江)撰写并维护的精品专栏内容。

刑无刀(本名陈开江),现为“贝壳找房”资深算法专家,从事算法类产品的研发。曾任新浪微博资深算法工程师,考拉 FM 算法主管。 刑无刀有 8 年的推荐系统方向从业经历,他在算法、架构、产品方面均有丰富的实践经验。同时,他也是中国最专业推荐技术与产品社区之一 ResysChina 的特约作者,有长期的技术写作经验。

(0)
上一篇 2022年1月14日 上午7:13
下一篇 2022年1月15日 上午11:08

相关推荐

发表回复

登录后才能评论